Saliency Based Opportunistic Search for Object Part Extraction and Labeling

نویسندگان

  • Yang Wu
  • Qihui Zhu
  • Jianbo Shi
  • Nanning Zheng
چکیده

We study the task of object part extraction and labeling, which seeks to understand objects beyond simply identifiying their bounding boxes. We start from bottom-up segmentation of images and search for correspondences between object parts in a few shape models and segments in images. Segments comprising different object parts in the image are usually not equally salient due to uneven contrast, illumination conditions, clutter, occlusion and pose changes. Moreover, object parts may have different scales and some parts are only distinctive and recognizable in a large scale. Therefore, we utilize a multi-scale shape representation of objects and their parts, figural contextual information of the whole object and semantic contextual information for parts. Instead of searching over a large segmentation space, we present a saliency based opportunistic search framework to explore bottom-up segmentation by gradually expanding and bounding the search domain. We tested our approach on a challenging statue face dataset and 3 human face datasets. Results show that our approach significantly outperforms Active Shape Models using far fewer exemplars. Our framework can be applied to other object categories.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saliency Based Opportunitstic Search for Object Part Extraction and Labeling

We study the task of object part extraction and labeling, which seeks to understand objects beyond simply identifiying their bounding boxes. We start from bottom-up segmentation of images and search for correspondences between object parts in a few shape models and segments in images. Segments comprising different object parts in the image are usually not equally salient due to uneven contrast,...

متن کامل

Compressed-Sampling-Based Image Saliency Detection in the Wavelet Domain

When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...

متن کامل

Reduced-Reference Image Quality Assessment based on saliency region extraction

In this paper, a novel saliency theory based RR-IQA metric is introduced. As the human visual system is sensitive to the salient region, evaluating the image quality based on the salient region could increase the accuracy of the algorithm. In order to extract the salient regions, we use blob decomposition (BD) tool as a texture component descriptor. A new method for blob decomposition is propos...

متن کامل

Real-time search-free multiple license plate recognition via likelihood estimation of saliency

In this paper, we propose a novel search-free localization method based on 3-D Bayesian saliency estimation. This method uses a new 3-D object tracking algorithm which includes: object detection, shadow detection and removal, and object recognition based on Bayesian methods. The algorithm is tested over three image datasets with different levels of complexities, and the results are compared wit...

متن کامل

Improved Object Detection Algorithm using Ant Colony Optimization and Deep Belief Networks Based Image Segmentaion

Object detection is a very important application of image processing. It is of vital importance for object dynamic surveillance and other applications. So far, object detection has been widely researched. It shows an efficient coarse object locating method based on a saliency mechanism. The method could avoid an exhaustive search across the image and generate a small number of bounding boxes. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008